1,061 research outputs found

    Laser Rayleigh and Raman Diagnostics for Small Hydrogen/oxygen Rockets

    Get PDF
    Localized velocity, temperature, and species concentration measurements in rocket flow fields are needed to evaluate predictive computational fluid dynamics (CFD) codes and identify causes of poor rocket performance. Velocity, temperature, and total number density information have been successfully extracted from spectrally resolved Rayleigh scattering in the plume of small hydrogen/oxygen rockets. Light from a narrow band laser is scattered from the moving molecules with a Doppler shifted frequency. Two components of the velocity can be extracted by observing the scattered light from two directions. Thermal broadening of the scattered light provides a measure of the temperature, while the integrated scattering intensity is proportional to the number density. Spontaneous Raman scattering has been used to measure temperature and species concentration in similar plumes. Light from a dye laser is scattered by molecules in the rocket plume. Raman spectra scattered from major species are resolved by observing the inelastically scattered light with linear array mounted to a spectrometer. Temperature and oxygen concentrations have been extracted by fitting a model function to the measured Raman spectrum. Results of measurements on small rockets mounted inside a high altitude chamber using both diagnostic techniques are reported

    Laser diagnostics for small rockets

    Get PDF
    Two nonintrusive flowfield diagnostics based on spectrally-resolved elastic (Rayleigh) and inelastic (Raman) laser light scattering were developed for obtaining local flowfield measurements in low-thrust gaseous H2/O2 rocket engines. The objective is to provide an improved understanding of phenomena occurring in small chemical rockets in order to facilitate the development and validation of advanced computational fluid dynamics (CFD) models for analyzing engine performance. The laser Raman scattering diagnostic was developed to measure major polyatomic species number densities and rotational temperatures in the high-density flowfield region extending from the injector through the chamber throat. Initial application of the Raman scattering diagnostic provided O2 number density and rotational temperature measurements in the exit plane of a low area-ratio nozzle and in the combustion chamber of a two-dimensional, optically-accessible rocket engine. In the low-density nozzle exit plane region where the Raman signal is too weak, a Doppler-resolved laser Rayleigh scattering diagnostic was developed to obtain axial and radial mean gas velocities, and in certain cases, H2O translational temperature and number density. The results from these measurements were compared with theoretical predictions from the RPLUS CFD code for analyzing rocket engine performance. Initial conclusions indicate that a detailed and rigorous modeling of the injector is required in order to make direct comparisons between laser diagnostic measurements and CFD predictions at the local level

    Molecular diagnostic and genetic characterization of highly pathogenic viruses: application during Crimean–Congo haemorrhagic fever virus outbreaks in Eastern Europe and the Middle East

    Get PDF
    AbstractSeveral haemorrhagic fevers are caused by highly pathogenic viruses that must be handled in Biosafety level 4 (BSL–4) containment. These zoonotic infections have an important impact on public health and the development of a rapid and differential diagnosis in case of outbreak in risk areas represents a critical priority. We have demonstrated the potential of a DNA resequencing microarray (PathogenID v2.0) for this purpose. The microarray was first validated in vitro using supernatants of cells infected with prototype strains from five different families of BSL-4 viruses (e.g. families Arenaviridae, Bunyaviridae, Filoviridae, Flaviviridae and Paramyxoviridae). RNA was amplified based on isothermal amplification by Phi29 polymerase before hybridization. We were able to detect and characterize Nipah virus and Crimean–Congo haemorrhagic fever virus (CCHFV) in the brains of experimentally infected animals. CCHFV was finally used as a paradigm for epidemics because of recent outbreaks in Turkey, Kosovo and Iran. Viral variants present in human sera were characterized by BLASTN analysis. Sensitivity was estimated to be 105–106 PFU/mL of hybridized cDNA. Detection specificity was limited to viral sequences having ˜13–14% of global divergence with the tiled sequence, or stretches of ˜20 identical nucleotides. These results highlight the benefits of using the PathogenID v2.0 resequencing microarray to characterize geographical variants in the follow-up of haemorrhagic fever epidemics; to manage patients and protect communities; and in cases of bioterrorism

    Averages of bb-hadron, cc-hadron, and τ\tau-lepton properties as of summer 2014

    Full text link
    This article reports world averages of measurements of bb-hadron, cc-hadron, and τ\tau-lepton properties obtained by the Heavy Flavor Averaging Group (HFAG) using results available through summer 2014. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, CPCP violation parameters, parameters of semileptonic decays and CKM matrix elements.Comment: 436 pages, many figures and tables. Online updates available at http://www.slac.stanford.edu/xorg/hfag

    Complex evolution and epidemiology of Dobrava-Belgrade hantavirus: definition of genotypes and their characteristics.

    Get PDF
    Dobrava-Belgrade virus (DOBV) is a human pathogen that has evolved in, and is hosted by, mice of several species of the genus Apodemus. We propose a subdivision of the species Dobrava-Belgrade virus into four related genotypes – Dobrava, Kurkino, Saaremaa, and Sochi – that show characteristic differences in their phylogeny, specific host reservoirs, geographical distribution, and pathogenicity for humans

    A Hierarchical NeuroBayes-based Algorithm for Full Reconstruction of B Mesons at B Factories

    Full text link
    We describe a new B-meson full reconstruction algorithm designed for the Belle experiment at the B-factory KEKB, an asymmetric e+e- collider that collected a data sample of 771.6 x 10^6 BBbar pairs during its running time. To maximize the number of reconstructed B decay channels, it utilizes a hierarchical reconstruction procedure and probabilistic calculus instead of classical selection cuts. The multivariate analysis package NeuroBayes was used extensively to hold the balance between highest possible efficiency, robustness and acceptable consumption of CPU time. In total, 1104 exclusive decay channels were reconstructed, employing 71 neural networks altogether. Overall, we correctly reconstruct one B+/- or B0 candidate in 0.28% or 0.18% of the BBbar events, respectively. Compared to the cut-based classical reconstruction algorithm used at the Belle experiment, this is an improvement in efficiency by roughly a factor of 2, depending on the analysis considered. The new framework also features the ability to choose the desired purity or efficiency of the fully reconstructed sample freely. If the same purity as for the classical full reconstruction code is desired ~25%, the efficiency is still larger by nearly a factor of 2. If, on the other hand, the efficiency is chosen at a similar level as the classical full reconstruction, the purity rises from ~25% to nearly 90%
    corecore